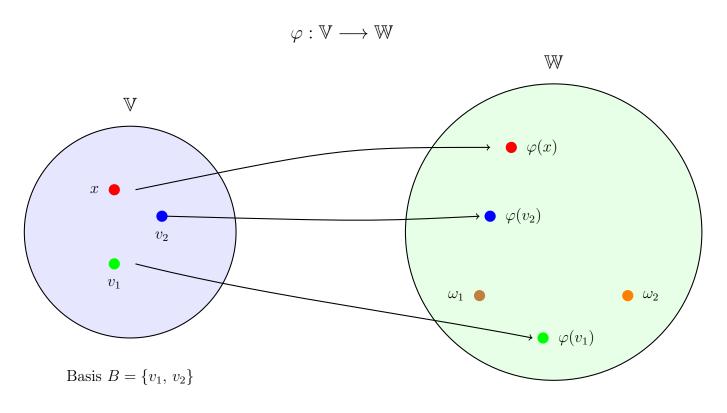
Mind Map: Linear Transformations and Their Matrix Representation



Basis $C = \{\omega_1, \omega_2\}$

Initial assumptions:

- Let us take a look at the linear transformation $\varphi: \mathbb{V} \longrightarrow \mathbb{W}$.
- Suppose, that $\mathbb V$ and $\mathbb W$ have basis sets B and C respectively.
- ullet For simplicity, we draw only useful for us elements of $\mathbb V$ and $\mathbb W$. Of course it could surely be infinitely many elements in each of these spaces.

Linear Transformations

$$\varphi: \mathbb{V} \to \mathbb{W}$$
$$\varphi(\alpha u + \beta v) = \alpha \varphi(u) + \beta \varphi(v)$$

Basis in \mathbb{V}

$$B = \{v_1, v_2\}$$

$$x = x_1 v_1 + x_2 v_2, \ [x]_B = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\varphi(x) = \varphi(x_1v_1 + x_2v_2) = x_1 \varphi(v_1) + x_2 \varphi(v_2)$$

Key Idea: We can compute $\varphi(x)$ for any $x \in \mathbb{V}$ if we just know the image of the basis vectors $\varphi(v_1)$ and $\varphi(v_2)$

Basis in W

$$\begin{split} C &= \{\omega_1, \omega_2\} \\ \varphi(v_1) &= a_{11}\omega_1 + a_{21}\omega_2, \ [\varphi(v_1)]_C = \begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix} \\ \varphi(v_2) &= a_{12}\omega_1 + a_{22}\omega_2, \ [\varphi(v_2)]_C = \begin{pmatrix} a_{12} \\ a_{22} \end{pmatrix} \end{split}$$

Matrix of Linear Transformation

$$\varphi(x) = x_1 \left(a_{11}\omega_1 + a_{21}\omega_2 \right) + x_2 \left(a_{12}\omega_1 + a_{22}\omega_2 \right) = \underbrace{\left(a_{11}x_1 + a_{12}x_2 \right)}_{\gamma_1} \omega_1 + \underbrace{\left(a_{21}x_1 + a_{22}x_2 \right)}_{\gamma_2} \omega_2$$

$$\varphi(x) = \gamma_1 \omega_1 + \gamma_2 \omega_2$$
 - decomposition of $\varphi(x)$ in \mathbb{W}

$$[\varphi(x)]_C = \begin{pmatrix} \gamma_1 \\ \gamma_2 \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 \\ a_{21}x_1 + a_{22}x_2 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$[\varphi(x)]_C = A_{\varphi} \, [x]_B$$

- A_{φ} matrix of linear transformation φ
- $[x]_B$ coordinates of x in basis B
- $[\varphi(x)]_C$ coordinates of $\varphi(x)$ in basis C

Key Ideas:

- Linear transformations are completely determined by their action on basis vectors
- Matrix representation allows to connect through the matrix-vector multiplication the **preimage** x and **image** $\varphi(x)$ coordinates in bases in domain \mathbb{V} and target space \mathbb{W} respectively